4.2 Article Proceedings Paper

Universal non-diffusive slow dynamics in aging soft matter

期刊

FARADAY DISCUSSIONS
卷 123, 期 -, 页码 237-251

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b204495a

关键词

-

向作者/读者索取更多资源

We use conventional and multispeckle dynamic light scattering to investigate the dynamics of a wide variety of jammed soft materials, including colloidal gels, concentrated emulsions, and concentrated surfactant phases. For all systems, the dynamic structure factor f (q, t) exhibits a two-step decay. The initial decay is due to the thermally activated diffusive motion of the scatterers, as indicated by the q(-2) dependence of the characteristic relaxation time, where q is the scattering vector. However, due to the constrained motion of the scatterers in jammed systems, the dynamics are arrested and the initial decay terminates in a plateau. Surprisingly, we find that a final, ultraslow decay leads to the complete relaxation of f (q, t), indicative of rearrangements on length scales as large as several microns or tens of microns. Remarkably, for all systems the same very peculiar form is found for the final relaxation of the dynamic structure factor: f (q, t) similar to exp [ (t /tau(s))(p)], with p approximate to 1.5 and t(s) similar to q(-1), thus suggesting the generality of this behavior. Additionally, for all samples the final relaxation slows down with age, although the aging behavior is found to be sample dependent. We propose that the unusual ultraslow dynamics are due to the relaxation of internal stresses, built into the sample at the jamming transition, and present simple scaling arguments that support this hypothesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据