4.7 Article

Proliferative Neural Stem Cells Have High Endogenous ROS Levels that Regulate Self-Renewal and Neurogenesis in a PI3K/Akt-Dependant Manner

期刊

CELL STEM CELL
卷 8, 期 1, 页码 59-71

出版社

CELL PRESS
DOI: 10.1016/j.stem.2010.11.028

关键词

-

资金

  1. Cure Autism Now Fellowship
  2. Autism Speaks Basic and Clinical grant
  3. Autism Speaks Environmental Sciences
  4. Center for Autism Research and Treatment (CART) [06LEB2008]
  5. NIH/NICHD [11 P50-HD-055784]
  6. NIH [MH65756]
  7. Henry Singleton Brain Cancer Research Program
  8. James S. McDonnell Foundation
  9. Miriam and Sheldon Adelson Program in Neural Repair and Rehabilitation
  10. University of California, Cancer Research Coordinating Committee
  11. National Institutes of Health [CA-16042, AI-28697]
  12. JCCC
  13. UCLA AIDS Institute
  14. David Geffen School of Medicine at UCLA
  15. UCLA Chancellor's Office

向作者/读者索取更多资源

The majority of research on reactive oxygen species (ROS) has focused on their cellular toxicities. Stem cells generally have been thought to maintain low levels of ROS as a protection against these processes. However, recent studies suggest that ROS can also play roles as second messengers, activating normal cellular processes. Here, we investigated ROS function in primary brain-derived neural progenitors. Somewhat surprisingly, we found that proliferative, self-renewing multipotent neural progenitors with the phenotypic characteristics of neural stem cells (NSC) maintained a high ROS status and were highly responsive to ROS stimulation. ROS-mediated enhancements in self-renewal and neurogenesis were dependent on PI3K/Akt signaling. Pharmacological or genetic manipulations that diminished cellular ROS levels also interfered with normal NSC and/or multipotent progenitor function both in vitro and in vivo. This study has identified a redox-mediated regulatory mechanism of NSC function that may have significant implications for brain injury, disease, and repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据