4.5 Article

Morphology and metabolism of Ba-alginate-encapsulated hepatocytes with galactosylated chitosan and poly(vinyl alcohol) as extracellular matrices

期刊

出版社

VSP BV
DOI: 10.1163/15685620360674245

关键词

encapsulation; alginate; galactosylated chitosan; hepatocyte; ammonia removal

向作者/读者索取更多资源

Lactobionic acid, bearing a beta-galactose group, was coupled with chitosan to provide synthetic extracellular matrices together with poly(vinyl alcohol) (PVA). The hepatocytes encapsulated in Ba-alginate capsules with galactosylated chitosan (GC) and PVA as extracellular matrices showed aggregation morphologies as the incubation time increased. Ba-alginate-encapsulated hepatocytes with GC exhibited a higher metabolic function in albumin secretion compared to those entrapped in Ba-alginate beads and monolayer-cultured on a collagen-immobilized polystyrene dish. The ammonia removal ability of monolayer-cultured hepatocytes decreased with increasing culture time and disappeared completely after three days. In contrast, the ammonia removal ability of encapsulated and entrapped hepatocytes increased with increasing incubation time in the first seven and five days, respectively. Thereafter, the entrapped hepatocytes lost ammonia removal ability quickly while the encapsulated hepatocytes kept a relatively high ammonia removal ability up to 13 days. The trace amount of GC in the core matrices enabled encapsulated cells to enhance their ammonia removal and albumin secretion ability. The results obtained with 3-(3,4-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) also showed that the capsules incorporated with GC can provide a better microenvironment for cell aggregation along with nutrition and metabolite transfer. Due to the nature of the liquid core, the encapsulated hepatocytes showed very good mobility. This facilitated cell-cell interaction and cell-matrix interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据