4.5 Article

Phase-field modeling for facet dendrite growth of silicon

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1016/j.stam.2003.09.017

关键词

Phase-field model; Anisotropic interface energy; Facet dendrite

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [14205106]

向作者/读者索取更多资源

Dendrite growth of silicon from its undercooled melt was investigated by using the phase-field model for a faceted crystal with anisotropic interfacial energy. The phase-field parameters at the thin interface limit were derived and used in the simulation. The accuracy of the model was estimated from the calculated equilibrium interface shape. The errors in anisotropy and Gibbs-Thomson coefficient were within 1% and 10%, respectively. The growth of a silicon crystal from its undercooled melt has been analyzed and it is shown that the shape of growing crystal changes from square-like to dendritic with increase of undercooling. In a facet dendrite growth the tip grows keeping its shape and the shape is the same regardless of undercooling or growth velocity. It is also shown that there exists the scaling law between the characteristic length of the tip and growth velocity similar to that of a non-facet dendrite. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据