4.7 Article

Brain area-specific effect of TGF-β signaling on Wnt-dependent neural stem cell expansion

期刊

CELL STEM CELL
卷 2, 期 5, 页码 472-483

出版社

CELL PRESS
DOI: 10.1016/j.stem.2008.03.006

关键词

-

向作者/读者索取更多资源

Regulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-beta signaling as a crucial factor controlling these processes. At early developmental stages, TGF-beta signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/beta-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-beta signal activation counteracts Wnt-incluced proliferation of midbrain neuroepithelial cells. Thus, TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据