4.5 Article Proceedings Paper

Birth-related genomic and transcriptional changes in mouse lung modulation by transplacental N-acetylcysteine

期刊

MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH
卷 544, 期 2-3, 页码 441-449

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mrrev.2003.05.004

关键词

birth; N-acetylcysteine; DNA adducts; oxidative DNA damage; micronuclei; multigene expression; cDNA array

向作者/读者索取更多资源

Birth is characterized by a sudden transition from the maternal-mediated respiration to the autonomous pulmonary respiration. Notwithstanding the importance of the involved functional and metabolic changes, little is known about possible DNA alterations occurring in the lung during the perinatal period. We comparatively evaluated genomic and transcriptional changes in the lung of fetuses and newborn Swiss albino mice, whose dams had either been untreated or treated with oral N-acetyl-L-cysteine (NAC) throughout the pregnancy period. In the less than 24h period elapsing between the end of fetal life and the start of post-natal life, nucleotide alterations occurred in mouse lung, as shown by a significant increase of both bulky DNA adducts and 8-hydroxy-2-deoxyguanosine levels, detected by P-32 post-labeling procedures. The frequency of micronuclei in peripheral blood erythrocytes was not significantly increased after birth. Multigene expression analysis of 746 selected genes, by cDNA arrays, showed that 33 of them (4.4%) were upregulated in the lung of newborn mice, as compared with fetuses. The overexpressed genes were mainly involved in protective mechanism as a response to oxidative changes, alterations of glutathione metabolism, cellular stress, and damage to DNA and proteins. The transplacental treatment with NAC totally prevented birth-related genomic alterations in lung DNA. NAC did not change the basal gene expression in mouse fetal lung, but attenuated the upregulation of most genes involved in oxidative stress, stress response, and DNA repair in the lung of newborn mice. In fact, only 13 genes (1.7%) were overexpressed in newborns from NAC-treated dams. It therefore appears that administration of NAC during pregnancy is beneficial not only to counteract the adverse effects of toxic agents, as supported by previous studies, but also to attenuate birth-related DNA alterations. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据