4.4 Article

The role of a formaldehyde dehydrogenase-glutathione pathway in protein S-nitrosation in mammalian cells

期刊

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
卷 9, 期 3, 页码 172-181

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2003.11.003

关键词

formaldehyde dehydrogenase; S-nitrosation; glutathione; S-nitrosothiols; S-nitrosoglutathione

向作者/读者索取更多资源

Intracellular sulfhydryls, both protein and non-protein, are potential targets of nitric oxide-related species. S-Nitrosation of proteins can occur in vivo and can affect their activity. Metabolic pathways that regulate protein S-nitrosation are therefore likely to be biologically important. We now report that formaldehyde dehydrogenase, an enzyme that decomposes S-nitrosoglutathione, can indirectly regulate the level of cellular protein S-nitroisation. Nitrogen oxide donors induced high levels of protein S-nitrosation in HeLa cells and lower levels in Mutatect fibrosarcoma cells, as determined by Saville-Griess assay and Western-dot-blot analysis. Depletion of glutathione by treatment with buthionine sulfoximine markedly increased protein S-nitrosation in both cell lines. Glutathione depletion also increased cytokine-induced S-nitrosation in brain endothelial cells. Formaldehyde dehydrogenase activity was 2-fold higher in Mutatect than in HeLa cells. We downregulated formaldehyde dehydrogenase activity in Mutatect cells by stably expressing antisense RNA and short-interfering RNA. In these cells, both protein S-nitrosation and S-nitrosoglutathione levels were significantly enhanced after exposure to nitrogen oxide donors as compared to parental cells. Overall, a strong inverse correlation between total S-nitrosothiols and formaldehyde dehydrogenase activity was seen. Inhibition of glutathione reductase, the enzyme that converts oxidized to reduced glutathione, by dehydroepiandrosterone similarly increased protein S-nitrosation and S-nitrosoglutathione levels in both cell lines. Our results provide the first evidence that formaldehyde dehydrogenase-dependent decomposition of S-nitrosoglutathione plays a role in protecting against nitrogen oxide-mediated protein S-nitrosation. We propose that formaldehyde dehydrogenase and glutathione reductase participate in a glutathione-dependent metabolic cycle that decreases protein S-nitrosation following exposure of cells to nitric oxide. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据