4.8 Article

Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses

期刊

CELL RESEARCH
卷 19, 期 11, 页码 1279-1290

出版社

SPRINGERNATURE
DOI: 10.1038/cr.2009.108

关键词

abiotic stress; Arabidopsis; ATAF1; biotic stress

资金

  1. National Natural Science Foundation of China [30530400/90717006/30670195]
  2. Chinese Academy of Science [KSCX2-YW-N-010, CXTD-S2005-2]
  3. Guangdong Natural Science Foundation, China [5300648]

向作者/读者索取更多资源

NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAF1-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bona fide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAF1-mediated signaling in response to both pathogen and abiotic stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据