4.7 Article

On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number Reθ=13000

期刊

JOURNAL OF FLUID MECHANICS
卷 775, 期 -, 页码 105-148

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2015.290

关键词

turbulent boundary layers; turbulent convection; turbulent flows

资金

  1. GENCI-CINES (Project ZDESWALLTURB) [2012-[c2012026817]]
  2. French defence procurement agency DGA

向作者/读者索取更多资源

The scale-dependent turbulent convection velocity of streamwise velocity fluctuations resolved by large eddy simulation is investigated for the first time across the whole profile of a zero-pressure-gradient spatially developing smooth flat plate boundary layer at Re-theta = 13000. The high Reynolds number and streamwise heterogeneity constraints motivate the derivation of a dedicated new method to assess the frequency-dependent convection velocity from time signals and their local streamwise derivative, using estimates of power spectral densities (PSDs). This method is inspired by del Alamo & Jimenez (J. Fluid Mech., vol. 640, 2009, pp. 5-26), who treated a lower Reynolds number channel flow with a method suited to spectral direct numerical simulations of streamwise homogeneous flows. Reconstruction of the streamwise spectrum from the time spectrum using the scale-dependent convection velocity is illustrated and compared with classical strategies. The new method inherently includes not only the assessment of the validity of Taylor's hypothesis, whose trend is remarkably consistent with theoretical predictions by Lin (Q. Appl. Maths, vol. X(4), 1953, 154-165), but also the definition of a global convection velocity accounting for any arbitrary frequency band. This global velocity is shown to coincide with a correlation-based method widely used in experiments. In addition to the mathematical least-squares definition of this velocity, new interpretations based on the flow physics and turbulent micro time scales are presented. Further, the group velocity is assessed and its relation to convection is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据