4.7 Article

Progressive damage and nonlinear analysis of pultruded composite structures

期刊

COMPOSITES PART B-ENGINEERING
卷 34, 期 3, 页码 235-250

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S1359-8368(02)00103-8

关键词

micromechanics; finite element analysis; damage mechanics; pultrusion

向作者/读者索取更多资源

This study combines a simple damage modeling approach with micromechanical models for the progressive damage analysis of pultruded composite materials and structures. Two micromodels are used to generate the nonlinear effective response of a pultruded composite system made up from two alternating layers reinforced with roving and continuous filaments mat (CFM). The layers have E-glass fiber and vinylester matrix constituents. The proposed constitutive and damage framework is integrated within a finite element (FE) code for a general nonlinear analysis of pultruded composite structures using layered shell or plate elements. The micromechanical models are implemented at the through-thickness Gaussian integration points of the pultruded cross-section. A layer-wise damage analysis approach is proposed. The Tsai-Wu failure criterion is calibrated separately for the CFM and roving layers using ultimate stress values from off-axis pultruded coupons under uniaxial loading. Once a failure is detected in one of the layers, the micromodel of that layer is no longer used. Instead, an elastic degrading material model is activated for the failed layer to simulate the post-ultimate response. Damage variables for in-plane modes of failure are considered in the effective anisotropic strain energy density of the layer. The degraded secant stiffness is used in the FE analysis. Examples of progressive damage analysis are carried out for notched plates under compression and tension, and a single-bolted connection under tension. Good agreement is shown when comparing the experimental results and the FE models that incorporate the combined micromechanical and damage models. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据