4.6 Article

Building adaptive estimating equations when inverse of covariance estimation is difficult

出版社

BLACKWELL PUBL LTD
DOI: 10.1111/1467-9868.00376

关键词

conjugate gradient; generalized estimating equations; generalized method of moments; infill asymptotics; longitudinal data; quadratic inference function; quasi-likelihood

向作者/读者索取更多资源

To construct an optimal estimating function by weighting a set of score functions, we must either know or estimate consistently the covariance matrix for the individual scores. In problems with high dimensional correlated data the estimated covariance matrix could be unreliable. The smallest eigenvalues of the covariance matrix will be the most important for weighting the estimating equations, but in high dimensions these will be poorly determined. Generalized estimating equations introduced the idea of a working correlation to minimize such problems. However, it can be difficult to specify the working correlation model correctly. We develop an adaptive estimating equation method which requires no working correlation assumptions. This methodology relies on finding a reliable approximation to the inverse of the variance matrix in the quasi-likelihood equations. We apply a multivariate generalization of the conjugate gradient method to find estimating equations that preserve the information well at fixed low dimensions. This approach is particularly useful when the estimator of the covariance matrix is singular or close to singular, or impossible to invert owing to its large size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据