4.3 Article

Venturi valves for steam turbines and improved design considerations

出版社

PROFESSIONAL ENGINEERING PUBLISHING LTD
DOI: 10.1243/09576500360611254

关键词

valves; turbine; vibration; numerical

向作者/读者索取更多资源

As a turbine governing valve, the venturi valve has been widely used in large turbines to regulate inlet flow for about 40 years. It is favoured in terms of low total pressure loss because of the converging-diverging configurations of the valve passage. However, as turbines become larger and larger, a number of valve failure incidents have been reported, and there is a great demand for improved designs. Yet, because of the complicated nature of the fluid-structure interaction mechanisms, the basic mechanism causing valve vibration and failure is still far from being fully understood. Most of the available literature relies heavily on experiments before the 1980s. There are several improved designs by the trial and error method, but governing rules, or even a clear direction for improvement, are almost non-existent. There has still seen no published investigation using computational fluid dynamics (CFD) tools. As CFD is increasingly recognized as a powerful tool for understanding complicated fluid phenomena, a two-dimensional numerical investigation was performed in the present work. The study revealed that valve plug vibration is due to hydraulic forces acting on the plug at its balanced position and fluid-induced excitation as the plug vibrates in the lateral and vertical directions. All this relates to unexpected asymmetric flow patterns. By changing the plug shape, the flow patterns can be made much more symmetric, which reduces the intensity of steady forces and fluid plug interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据