4.2 Article

Simultaneous variation of multipole parameters and Gram-Charlier coefficients in a charge-density study of tetrafluoroterephthalonitrile based on X-ray and neutron data

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0108767303018713

关键词

-

向作者/读者索取更多资源

Difficulties encountered in modelling the scattering of fluorine in organic compounds have been investigated through refinements of accurate X-ray and neutron diffraction data measured on tetrafluoroterephthalonitrile, TFT, at 122.4 K. Multipole refinements led to a highly contracted octopole on fluorine. The subsequent analysis revealed that fluorine does not possess a valence octopole but exhibits anharmonic thermal motion that can be modelled by the octopole multipole parameters. The scattering contribution from the octopole shows the same cubic dependence in the scattering vector as the Gram-Charlier expansion of the nuclear displacements to third order. The analysis also showed that refinement of third-order Gram-Charlier coefficients on fluorine requires data to at least 0.93 Angstrom(-1) resolution in sin theta/lambda. The X-ray data extending to 1.27 Angstrom(-1) were of sufficient resolution to include third-order Gram-Charlier coefficients for N, F and the cyano C atoms in the refinement, whereas the neutron data only enabled refinement of the third-order Gram-Charlier coefficients for nitrogen. The refinements of the neutron and X-ray diffraction data yielded identical atomic displacement parameters for all the atoms. Though inclusion of anharmonic motion for N and F atoms provides the best model, it does not affect the crystal electron density, and all intramolecular bond critical points have identical features. Application of the anharmonic model, however, leads to small differences in the intermolecular interactions, which is illustrated by the electrostatic potential adjacent to the N atom. The characteristics of the C-F bond were elucidated by the topological analysis of the crystal electron density, which also supported the proposed quinonoid structure of the benzene ring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据