3.9 Article

Long endogenous dsRNAs can induce complete gene silencing in mammalian cells and primary cultures

期刊

OLIGONUCLEOTIDES
卷 13, 期 5, 页码 381-392

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/154545703322617069

关键词

-

向作者/读者索取更多资源

Recently, double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) has rapidly developed to a powerful instrument for specific silencing of gene expression in several organisms, including Caenorhabditis elegans, Drosophila melanogaster, and plants. The finding that synthetic small interfering RNAs (siRNAs) of 21 nt as well as stable, endogenously expressed, large dsRNA are suited to specifically induce gene silencing in mammalian cells offered the possibility of expanding this technique to mammalian systems. In this work, we engineered stably transfected human cells that express large dsRNAs mediating specific posttranscriptional silencing of genes. We used this technique to specifically silence genes coding for glucosylceramide synthase (GCS), the sphingolipid activator protein precursor (SAP), and glucocerebrosidase (GBA), all implicated in glycosphingolipid metabolism. From a 1600-bp inverted repeat DNA template, a dsRNA of 800 bp is expressed and predicted to mediate the specific suppression of the corresponding gene by RNAi Remarkably, we were able to use this method to achieve complete inhibition of those genes we targeted in different cultured human cell lists. These findings testify to the generality of RNAi application in suppressing gene expression in mammalian cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据