4.2 Article

Multiscale Modeling of Deformation and Fracture of Polycrystalline Lamellar gamma-TiAl + alpha(2)-Ti3Al Alloys

出版社

BEGELL HOUSE INC
DOI: 10.1615/IntJMultCompEng.v1.i1.20

关键词

-

资金

  1. National Science Foundation [DMR-9906268, CMS-9531930]
  2. Office of High Performance Computing Facilities at Clemson University

向作者/读者索取更多资源

The deformation behavior of fully-lamellar polycrystalline gamma-TiAl + alpha(2)-Ti3Al alloys has been analyzed using a finite element method. A three-dimensional rate-dependent,finite-strain, crystal-plasticity based materials constitutive model is used to represent the deformation behavior of the bulk material The constitutive behavior of gamma-TiAl/gamma-TiAl lamellar interfaces and lamellae-colony boundaries, on the other hand, are modeled using a cohesive-zone formulation. The interface/boundary potentials used in this formulation are determined through the use of atomistic simulations of the interface/boundary decohesion. The constitutive relations for both the gamma-TiAl + alpha(2)-Ti3Al bulk material and the lamellar interfaces and colony boundaries are implemented in the commercial finite element program Abaqus/Standard, within which the material state is integrated using an Euler-backward implicit formulation. The results obtained show that plastic flow localizes into deformation bands even at an overall strain level of only 0.5% and that incompatibilities in plastic flow between the adjacent colonies can give rise to high levels of the hydrostatic stress and, in turn, to intercolony fracture. Furthermore, it is found that when lamellar interfaces are admitted into colonies, fracture is delayed and the materials fail in a more gradual manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据