4.7 Article

Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress

期刊

CELL DEATH AND DIFFERENTIATION
卷 18, 期 10, 页码 1561-1572

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cdd.2011.13

关键词

mitochondrial dynamics; microtubules; permeability transition; ROS; K+ channel

资金

  1. NIH [AA017773]

向作者/读者索取更多资源

Functional states of mitochondria are often reflected in characteristic mitochondrial morphology. One of the most fundamental stress conditions, hypoxia-reoxygenation has been known to cause impaired mitochondrial function accompanied by structural abnormalities, but the underlying mechanisms need further investigation. Here, we monitored bioenergetics and mitochondrial fusion-fission in real time to determine how changes in mitochondrial dynamics contribute to structural abnormalities during hypoxia-reoxygenation. Hypoxia-reoxygenation resulted in the appearance of shorter mitochondria and a decrease in fusion activity. This fusion inhibition was a result of impaired ATP synthesis rather than Opa1 cleavage. A striking feature that appeared during hypoxia in glucose-free and during reoxygenation in glucose-containing medium was the formation of donut-shaped (toroidal) mitochondria. Donut formation was triggered by opening of the permeability transition pore or K+ channels, which in turn caused mitochondrial swelling and partial detachment from the cytoskeleton. This then favored anomalous fusion events (autofusion and fusion at several sites among 2-3 mitochondria) to produce the characteristic donuts. Donuts effectively tolerate matrix volume increases and give rise to offspring that can regain Delta Psi(m). Thus, the metabolic stress during hypoxia-reoxygenation alters mitochondrial morphology by inducing distinct patterns of mitochondrial dynamics, which includes processes that could aid mitochondrial adaptation and functional recovery. Cell Death and Differentiation (2011) 18, 1561-1572; doi:10.1038/cdd.2011.13; published online 4 March 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据