4.5 Article

Mechanical property characterization of mouse zona pellucida

期刊

IEEE TRANSACTIONS ON NANOBIOSCIENCE
卷 2, 期 4, 页码 279-286

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNB.2003.820273

关键词

biomembrane mechanical modeling; elastic modulus; force sensing; intracytoplasmic sperm injection (ICSI); microelectromechanical systems (MEMS); microrobotic cell manipulation; zona pellucida (ZP) hardening

向作者/读者索取更多资源

Previous intracytoplasmic sperm injection (ICSI) studies have indicated significant variation in ICSI success rates among different species. In mouse ICSI, the zona pellucida (ZP) undergoes a hardening process at fertilization in order to prevent subsequent sperm from penetrating. There have been few studies investigating changes in the mechanical properties of mouse ZP post fertilization. To characterize mouse ZP mechanical properties and quantitate the mechanical property differences of the ZP before and after fertilization, a microelectromechanical systems-based multiaxis cellular force sensor has been developed. A microrobotic cell manipulation system employing the multiaxis cellular force sensor is used to conduct mouse ZP force sensing, establishing a quantitative relationship between applied forces and biomembrane structural deformations on both mouse oocytes and embryos. An analytical biomembrane elastic model is constructed to describe biomembrane mechanical properties. The characterized elastic modulus of embryos is 2.3 times that of oocytes, and the measured forces for puncturing embryo ZP are 1.7 times those for oocyte ZP. The technique and model presented in this paper can be applied to investigations into the mechanical properties of other biomembranes, such as the plasma membrane of oocytes or other cell types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据