4.5 Review

Intraflagellar transport

期刊

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev.cellbio.19.111401.091318

关键词

kinesin-II; IFT-dynein; cilia; flagella; motility; sensory signaling

资金

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM050718] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [GM50718] Funding Source: Medline

向作者/读者索取更多资源

It has been a decade since a novel form of microtubule (MT)-based motility, i.e., intraflagellar transport (IFT), was discovered in Chlamydomonas flagella. Subsequent research has supported the hypothesis that IFT is required for the assembly and maintenance of all cilia and flagella and that its underlying mechanism involves the transport of nonmembrane-bound macromolecular protein complexes (IFT particles) along axonemal MTs beneath the ciliary membrane. IFT requires the action of the anterograde kinesin-II motors and the retrograde IFT-dynein motors to transport IFT particles in opposite directions along the MT polymer lattice from the basal body to the tip of the axoneme and back again. A rich diversity of biological processes has been shown to depend upon IFT, including flagellar length control, cell swimming, mating and feeding, photoreception, animal development, sensory perception, chemosensory behavior, and lifespan control. These processes reflect the varied roles of cilia and flagella in motility and sensory signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据