4.5 Article

Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution

期刊

BIOPHYSICAL JOURNAL
卷 85, 期 5, 页码 3187-3193

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(03)74736-5

关键词

-

向作者/读者索取更多资源

We test molecular level hypotheses for the high thermal stability of alpha-helical conformations of alanine-based peptides by performing detailed atomistic simulations of a 20-amino-acid peptide with explicit treatment of water. To assess the contribution of large side chains to alpha-helix stability through backbone desolvation and salt-bridge formation, we simulate the alanine-rich peptide, Ac-YAEAAKAAEAAKAAEAAKAF-Nme, referred to as the EK peptide, that has three pairs of i, i + 3'' glutamic acid(-) and lysine(+) substitutions. Efficient configurational sampling of the EK peptide over a wide temperature range enabled by the replica exchange molecular dynamics technique allows characterization of the stability of alpha-helix with respect to heat-induced unfolding. We find that near ambient temperatures, the EK peptide predominately samples alpha-helical configurations with 80% fractional helicity at 300 K. The helix melts over a broad range of temperatures with melting temperature, T-m, equal to 350 K, that is significantly higher than the T-m of a 21-residue polyalanine peptide, A(21). Salt-bridges between oppositely charged Glu(-) and Lys(+) side chains can, in principle, provide thermal stability to alpha-helical conformers. For the specific EK peptide sequence, we observe infrequent formation of Glu-Lys salt-bridges (with similar to10-20% probability) and therefore we conclude that salt-bridge formation does not contribute significantly to the EK peptide's helical stability. However, lysine side chains are found to shield specific i, i + 4'' backbone hydrogen bonds from water, indicating that large side-chain substituents can play an important role in stabilizing alpha-helical configurations of short peptides in aqueous solution through mediation of water access to backbone hydrogen bonds. These observations have implications on molecular engineering of peptides and biomolecules in the design of their thermostable variants where the shielding mechanism can act in concert with other factors such as salt-bridge formation, thereby increasing thermal stability considerably.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据