4.6 Article

Structural and electronic properties of lithium intercalated graphite LiC6

期刊

PHYSICAL REVIEW B
卷 68, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.205111

关键词

-

向作者/读者索取更多资源

We calculate the lattice properties and electronic structure of graphite and LiC6 within the most widely used density-functional theory implementation, the local density approximation (LDA). Improvements to the LDA in the form of a generalized gradient approximation (GGA) are explored. Structural parameters predicted by the LDA, as expected, underestimate experiment within a 1%-2% margin of accuracy. The GGA does not give a good account in the prediction of lattice parameter c, especially in graphite, although it does give a reliable description of LiC6. The effect on intercalating lithium into graphite, where charge transfer from lithium to carbon layers (graphenes) is expected, is discussed from the valence charge density, partial density of states, and energy band structure plots. The latter plot is also compared with inelastic neutron scattering results and low-energy electron diffraction results. We extend this work by calculating the elastic constants and bulk modulus for both graphite and LiC6 structures. These results are in excellent agreement with the available experimental data. The calculated hydrostatic pressure dependence of the crystal structures is also found to be in good agreement with the results of high-resolution x-ray structural studies and with other experimental data as well as with other calculations. The analysis of electronic structure at 0 GPa (ambient pressure) is used to resolve inconsistencies between previous LDA calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据