4.6 Article

Discordance between phosphorylation and recruitment of 53BP1 in response to DNA double-strand breaks

期刊

CELL CYCLE
卷 11, 期 7, 页码 1432-1444

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.19824

关键词

53BP1; ATM; DNA-PKcs; DNA repair foci; ionizing radiation; RNF168; MRE11; DNA double-strand breaks

资金

  1. Canadian Cancer Society Research Institute
  2. CIHR
  3. Ontario Graduate Scholarship
  4. KM Hunter Graduate Fellowship
  5. Ontario Ministry of Health and Long-term Care

向作者/读者索取更多资源

During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and gamma H2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1(Ser25) and 53BP1(Ser1778) phosphorylation. In response to exogenous DSBs, 53BP1(Ser25) and 53BP1(Ser1778) phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据