4.6 Article

Physics of low-energy singlet states of the Kagome lattice quantum Heisenberg antiferromagnet

期刊

PHYSICAL REVIEW B
卷 68, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.214415

关键词

-

向作者/读者索取更多资源

This paper is concerned with physics of the low-energy singlet excitations found to exist below the spin gap in numerical studies of the Kagome lattice quantum Heisenberg antiferromagnet. Insight into the nature of these excitations is obtained by exploiting an approximate mapping to a fully frustrated transverse-field Ising model on the dual dice lattice. This Ising model is shown to possess at least two phases-an ordered phase that also breaks translational symmetry with a large unit cell, and a paramagnetic phase. The former is argued to be a likely candidate for the ground state of the original Kagome magnet which thereby exhibits a specific pattern of dimer ordering with a large unit cell. Comparisons with available numerical results are made.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据