4.6 Article

Quantum magneto-oscillations in a two-dimensional Fermi liquid

期刊

PHYSICAL REVIEW B
卷 68, 期 24, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.241309

关键词

-

向作者/读者索取更多资源

Quantum magneto-oscillations provide a powerful tool for quantifying Fermi-liquid parameters of metals. In particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a nonzero magnetic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in three dimensions (3D) but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据