4.8 Article

Intestinal glucose transport: Evidence for a membrane traffic-based pathway in humans

期刊

GASTROENTEROLOGY
卷 124, 期 1, 页码 34-39

出版社

W B SAUNDERS CO
DOI: 10.1053/gast.2003.50009

关键词

-

向作者/读者索取更多资源

Background & Aims: The presence of glucose transporter 2 (GLUT2) molecules in the basolateral membrane of enterocytes has long been considered to be of major importance for intestinal glucose absorption. The aim of this study was to reevaluate the role of GLUT2 in a patient with congenital GLUT2 deficiency (Fanconi-Bickel syndrome, FBS). Methods: Oral mono- and disaccharide tolerance tests including gaschromatographic determination of breath hydrogen concentrations were performed in an FBS patient. For comparison, a patient with a microsomal carbohydrate transport defect, glucose-6-phosphate translocase 1 (G6PT1) deficiency, and a control individual were investigated. Results: No increase in breath hydrogen concentration was found in the GLUT2-deficient patient after a glucose load. In G6PT1. deficiency, basal hydrogen concentrations were repeatedly found to be elevated. Conclusions: From the fact that a GLUT2-deficient patient does not show any impairment of intestinal monosaccharide transport measurable by the hydrogen breath test, we conclude that mechanisms other than facilitative glucose transport by GLUT2 must be involved in the transport of monosaccharides at the basolateral membrane of enterocytes. When relating this observation to the high intestinal expression of human hexokinase, G6PT1, and glucose-6-phosphatase and to our results of oral carbohydrate tolerance tests in a G6PT1-deficient patient, there is evidence that a microsomal membrane traffic-based transport pathway, as recently suggested for GLUT2-deficient animals, also plays a major role in trans-cellular monosaccharide transport of the human intestine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据