4.6 Article

Strain determination in silicon microstructures by combined convergent beam electron diffraction, process simulation, and micro-Raman spectroscopy

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 9, 页码 5574-5583

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1611287

关键词

-

向作者/读者索取更多资源

Test structures consisting of shallow trench isolation (STI) structures are fabricated using advanced silicon (Si) technology. Different process parameters and geometrical features are implemented to investigate the residual mechanical stress in the structures. A technology computer aided design homemade tool, IMPACT, is upgraded and optimized to yield strain fields in deep submicron complementary metal-oxide-semiconductor devices. Residual strain in the silicon substrate is measured with micro-Raman spectroscopy (mu-RS) and/or convergent beam electron diffraction (CBED) for large (25 mum) and medium size (2 mum), while only CBED is used for deep submicron STI (0.22 mum). We propose a methodology combining CBED and technology computer aided design (TCAD) with mu-RS to assess the accuracy of the CBED measurements and TCAD calculations on the widest structures. The method is extended to measure (by CBED) and calculate (by TCAD) the strain tensor in the smallest structures, out of the reach of the mu-RS technique. The capability of determining, by both measurement and calculation, the strain field distribution in the active regions of deep submicron devices is demonstrated. In particular, it is found that for these structures an elastoplastic model for Si relaxation must be assumed. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据