4.6 Article

Optimal design of manufacturable three-dimensional composites with multifunctional characteristics

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 9, 页码 5748-5755

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1611631

关键词

-

向作者/读者索取更多资源

We present an optimization method to design three-dimensional composite microstructures with multifunctional characteristics. To illustrate the fascinating types of microstructures that can arise in multifunctional optimization, we apply our methodology to the study the simultaneous transport of heat and electricity in three-dimensional, two-phase composites. We assume that phase 1 has a high thermal conductivity but low electrical conductivity and phase 2 has a low thermal conductivity but high electrical conductivity. The objective functions consist of different combinations of the dimensionless effective thermal and electrical conductivities. When the sum of the effective thermal and electrical conductivities is maximized, we find that the optimal three-dimensional microstructures are triply periodic bicontinuous composites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal surfaces. Maximizing the effective thermal conductivity and minimizing the effective electrical conductivity results in a special dispersion of inclusions in a connected matrix. The effective properties of both the bicontinuous and singly connected microstructures lie on known optimal cross-property bounds. When the sum of the effective thermal and electrical conductivities is minimized, the result is the three-dimensional checkerboard, which is the optimal single-scale microstructure. It is important to note that current fabrication techniques enable one to manufacture all of the aforementioned optimal single-scale composites. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据