4.5 Article

Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity

期刊

JOURNAL OF NEUROCHEMISTRY
卷 87, 期 6, 页码 1413-1426

出版社

WILEY
DOI: 10.1111/j.1471-4159.2003.02259.x

关键词

2APB; beta-amyloid; calcium; caspase-3; caspase-9; GRP78

向作者/读者索取更多资源

Beta-amyloid (Abeta) peptide has been suggested to play important roles in the pathogenesis of Alzheimer's disease (AD). Abeta peptide neurotoxicity was shown to induce disturbance of cellular calcium homeostasis. However, whether modulation of calcium release from the endoplasmic reticulum (ER) can protect neurons from Abeta toxicity is not clearly defined. In the present study, Abeta peptide-triggered ER calcium release in primary cortical neurons in culture is modulated by Xestospongin C, 2-aminoethoxydiphenyl borate or FK506. Our results showed that reduction of ER calcium release can partially attenuate Abeta peptide neurotoxicity evaluated by LDH release, caspase-3 activity and quantification of apoptotic cells. While stress signals associated with perturbations of ER functions such as up-regulation of GRP78 was significantly attenuated, other signaling machinery such as activation of caspase-7 transmitting death signals from ER to other organelles could not be altered. We further provide evidence that molecular signaling in mitochondria play also a significant role in determining neuronal apoptosis because Abeta peptide-triggered activation of caspase-9 was not significantly reduced by attenuating ER calcium release. Our results suggest that neuroprotective strategies aiming at reducing Abeta toxicity should include molecular targets linked to ER perturbations associated with ER calcium release as well as mitochondrial stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据