4.6 Review

The AMPK-FoxO3A axis as a target for cancer treatment

期刊

CELL CYCLE
卷 9, 期 6, 页码 1091-1096

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.9.6.11035

关键词

AMPK; FoxO3A; cancer; signal-dependent transcription; antitumor therapy; cell metabolism; calorie restriction

资金

  1. FIRC (Italian Foundation for Cancer Research)
  2. Italian Association for Cancer Research (AIRC)

向作者/读者索取更多资源

FoxO proteins are an evolutionarily conserved subfamily of transcription factors involved in tumor suppression, regulation of energy metabolism and development in several tissues, and are mainly regulated by phosphorylation-dependent nuclear/cytoplasmic shuttling. The transcriptional activity of FoxO3A, one of the four members of the family, is further modulated by AMPK, one of the key regulators of cellular metabolism, which basically shifts cell machinery from energy-consuming to energy-producing pathways. We recently demonstrated that the AMPK/FoxO3A energy sensor pathway is still inducible in human cancer cells in response to metabolic stress, as it becomes activated in colorectal and ovarian cancer cells in response to the inhibition of p38 alpha. Activation of the FoxO3A transcriptional program initially induces autophagy as an attempt to retain energy to survive, whereas under persistent stress conditions it triggers autophagic cell death. In this review, we focus on the connections between AMPK and FoxO3A, describing their central role as modulators of fundamental processes such as stress resistance, cell metabolism, autophagy and cell death, and highlighting the therapeutic potential of pharmacological modulation of the AMPK-FoxO3A axis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据