4.5 Article

Neuronal-NOS adaptor protein expression after spreading depression: implications for NO production and ischemic tolerance

期刊

JOURNAL OF NEUROCHEMISTRY
卷 87, 期 6, 页码 1368-1380

出版社

WILEY
DOI: 10.1046/j.1471-4159.2003.02099.x

关键词

dynein motor molecules; Mn- and Cu/Zn-superoxide dismutase; nitric oxide; NMDA receptor; PIN-CAPON-PSD-95; spreading depression

向作者/读者索取更多资源

Cortical spreading depression (CSD) is characterized by slowly propagating waves of neuronal/astrocytic depolarization and metabolic changes, followed by a period of quiescent neuronal and electroencephalographic activity. CSD acts as a preconditioning stimulus in brain, reducing cell death when elicited up to several days prior to an ischemic insult. Precise mechanisms associated with this neuroprotection are not known, although CSD increases the expression of a number of potentially neuroprotective genes/proteins. The nitric oxide (NO) system may be of particular importance, as it is acutely activated and chronically up-regulated in cerebral cortex by CSD, and NO can ameliorate and exacerbate cell death under different conditions. Several molecules have recently been identified that modulate the production and/or cellular actions of NO, but it is not known whether their expression is altered by CSD. Therefore, the present study examined the effect of CSD on the spatiotemporal expression of PIN, CAPON, PSD-95, Mn-SOD and Cu/Zn-SOD mRNA in the rat brain. In situ hybridization using specific [S-35]-labelled oligonucleotides revealed that levels of PIN mRNA were significantly increased in the cortex and claustrum (similar to30-180%; p less than or equal to 0.01) after 6 h and 1 and 2 days, but were again equivalent to contralateral (control) cortical values at 7, 14 and 28 days. CAPON mRNA levels were increased (similar to30-180%; p less than or equal to 0.05) in the ipsilateral cortical hemisphere at 6 h and 2 days post treatment, but not at the other times examined. In contrast, levels of PSD-95, Mn- and Cu/Zn-SOD mRNA were not altered at any time after CSD. These results suggest that following CSD, nNOS activity and NO levels may be tightly regulated by both transcriptional and translational alterations in a range of nNOS adaptor proteins, which may contribute to CSD-induced neuroprotection against subsequent ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据