4.5 Article

Respiratory deposition and inhalability of monodisperse aerosols in Long-Evans rats

期刊

TOXICOLOGICAL SCIENCES
卷 71, 期 1, 页码 104-111

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/71.1.104

关键词

aerosol; deposition; inhalability; Long-Evans rats; mathematical modeling

向作者/读者索取更多资源

Because of limitations on conducting exposure experiments using human subjects to evaluate adverse health effects, the deposition and fate of airborne particles in animals are often studied. The results of such studies are extrapolated to humans to estimate equivalent dose and subsequent response. In this article, particle inhalability and respiratory deposition of micron-size particles are determined for female Long-Evans rats. Monodisperse aerosols were generated from a solution of radiolabeled iron chloride ((FeCl3)-Fe-59). Long-Evans rats were exposed to the radiolabeled particles in a Cannon nose-only exposure tower to determine head, lung lobar, and total lung deposition fractions. Particle deposition fractions in a hypothetical situation, when all particles are inhalable, were found from an experimentally validated deposition model. Particle inhalability in a Cannon nose-only exposure scenario was obtained by comparing the measured deposition fractions with the predicted values for the case of 100% inhalability. Particle deposition fraction and inhalability were compared with data available in the literature. For large particles, the measured deposition fraction was lower than the literature values. Consequently, our inhalability estimates were found to be lower than previously published values. The findings here will directly affect health risk assessments in humans from exposure to airborne particles. The deposition results will improve the database on particle deposition in the lung airways of rats, and inhalability information will improve the accuracy of rat-to-human data extrapolation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据