4.7 Review

Dissecting autoimmune diabetes through genetic manipulation of non-obese diabetic mice

期刊

DIABETOLOGIA
卷 46, 期 11, 页码 1447-1464

出版社

SPRINGER-VERLAG
DOI: 10.1007/s00125-003-1218-1

关键词

non-obese diabetic mice; autoimmune; immunology; lymphocytes; pathogenesis; Type 1 diabetes

向作者/读者索取更多资源

Type 1 diabetes results from a genetically and immunologically complex autoimmune process that is specifically directed against the pancreatic beta cells. Non-obese diabetic mice spontaneously develop a form of autoimmune diabetes closely resembling the disease in humans. This happens because, like human diabetic patients, non-obese diabetic mice have an unfortunate combination of apparently normal alleles at numerous loci associated with Type 1 diabetes. In isolation, each of these allelic variants affords a small degree of susceptibility to diabetes. In combination, however, they set in motion a series of immunological events that lead to islet inflammation and overt diabetes. Type 1 diabetes is associated with defects in self-tolerance and immunoregulation. It involves presentation of beta cell antigens to autoreactive T lymphocytes by professional antigen-presenting cells, the recruitment of antigen-activated T cells into pancreatic islets, and the differentiation of these antigen-activated lymphocytes into beta cell killers. Understanding the precise sequence of events in the pathogenesis of Type 1 diabetes has been, and remains, a challenging task. Much of our understanding of the immunology of the disease stems from studies of genetically engineered, non-obese diabetic mice. These mice provide reductionist systems, with which the contribution of individual cellular elements, molecules or genes to the disease process can be dissected. This review focuses on the lessons that have been learned through studies of these mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据