4.6 Article

Dual functions of DNA replication forks in checkpoint signaling and PCNA ubiquitination

期刊

CELL CYCLE
卷 8, 期 2, 页码 191-194

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.8.2.7357

关键词

DNA damage; checkpoint; replication fork; PCNA; ATR; Chk1; ubiquitination

资金

  1. NIH [GM076388]
  2. Ellison Medical Foundation
  3. Susan G. Komen for the Cure

向作者/读者索取更多资源

During cell proliferation, DNA damage inflicted by intrinsic or extrinsic genotoxic stresses impose a thereat to DNA replication. The stability of the DNA replication forks that encounter DNA damage is crucial for genomic integrity. Both the ATR-regulated checkpoint pathway and the translesion DNA synthesis mediated by the ubiquitinated PCNA are important for continuous replication of damaged DNA. We have recently shown that Chk1, a key effector kinase of ATR in checkpoint response, is required for efficient PCNA ubiquitination after DNA damage. Surprisingly, the ubiquitination of PCNA is independent of ATR, but regulated by Claspin, a replication protein that mediates the activation of Chk1 by ATR. Like Claspin, Timeless and Rad17, two other Chk1 regulators at stressed replication forks, are also implicated in PCNA ubiquitination. These findings suggest that while ATR signaling and PCNA ubiquitination are two independent processes, they are mediated by a common group of proteins including Chk1 and it regulators at replication forks. Furthermore, these data raise the possibility that Chk1 and its regulators may constitute a functional module at replication forks to enable multiple stress responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据