4.6 Article

Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells

期刊

CELL CYCLE
卷 7, 期 12, 页码 1769-1775

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.7.12.6016

关键词

AMPK; targeted tumor therapy; cardiotoxicity; cancer; metabolism

向作者/读者索取更多资源

ErbB2 targeted therapies represent an attractive strategy in breast cancer. Herceptin, an anti- ErbB2 monoclonal antibody, is an approved treatment for patients with ErbB2-overexpressing breast cancers. ErbB2 signaling can also be blocked using small molecule tyrosine kinase inhibitors, like Lapatinib, that compete with ATP for binding at the ErbB2 catalytic kinase domain. The principal adverse event attributable to Herceptin is cardiac toxicity. Data from clinical trials show that, unlike Herceptin, Lapatinib may have reduced cardiac toxicity. This study was conducted to elucidate pathways which may contribute to cardiac toxicity or survival using Lapatinib and Herceptin. Our results show that treatments directed to ErbB1/2 receptors using GW-2974 (a generic ErbB1/2 inhibitor) activated AMPK, a key regulator in mitochondrial energy production pathways in human cardiac cells and cancer cells. Although Herceptin downregulates tumor survival pathways, AMPK fails to be activated in tumor and cardiac cells. When treated in combination with TNF alpha, a known cytokine associated with cardiac toxicity, GW-2974 protected cardiac cells from cell death whereas Herceptin contributed to TNF alpha-induced cellular killing. Since activity of AMPK in cardiac cells is associated with stress induced survival in response to cytokines or energy depletion, cardiac toxicity by Herceptin may be a consequence of failure to induce stress-related survival mechanisms. Thus, the ability to activate AMPK after treatment with tyrosine kinase inhibitors may be a crucial factor for increased efficacy against the tumor and decreased risk of cardiomyopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据