4.6 Article

Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli

期刊

JOURNAL OF NUTRITION
卷 133, 期 12, 页码 4077-4082

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jn/133.12.4077

关键词

zinc oxide; caco-2 cells; enterotoxigenic Escherichia coli; protective effect; intestinal cells

向作者/读者索取更多资源

There is some evidence that zinc oxide (ZnO) protects against intestinal diseases. However, despite the suggestions that ZnO may have an antibacterial effect, the mechanisms of this protective effect have not yet been elucidated. We investigated the potential benefits of ZnO in protecting intestinal cells from damage induced by enterotoxigenic Escherichia coli (ETEC, strain K88) and the related mechanisms, using human Caco-2 enterocytes. Cell permeability, measured as transepithelial electrical resistance (TEER), was unaffected by 0.01 and 1 mmol/L ZnO treatments and moderately increased by 5 mmol/L ZnO, compared with untreated cells. Transfer of C-14-inulin was slightly increased by 5 mmol/L ZnO compared with untreated cells; transfer was unaffected by lower concentrations. The TEER and C-14-inulin transfer were lower in ETEC-infected cells than in uninfected cells. Treatment of ETEC exposure with 0.2 mmol/L ZnO prevented disruption of membrane integrity. The ETEC was able to adhere to enterocytes and, to some extent, invade the cells. The ZnO treatment reduced bacterial adhesion and blocked bacterial invasion. The ETEC infection upregulated the expression of the inflammatory cytokines interleukin-8, growth-related oncogene-alpha and tumor necrosis factor-alpha, and reduced that of the anti-inflammatory cytokine transforming growth factor-beta, compared with uninfected cells. The addition of 0.2 or 1 mmol/L ZnO counteracted the alteration of cytokine mRNA levels caused by ETEC. The protective effects of ZnO were not due to any antibacterial activity, because the viability of ETEC grown in a medium containing ZnO was unaffected. In conclusion, ZnO may protect intestinal cells from ETEC infection by inhibiting the adhesion and internalization of bacteria, preventing the increase of tight junction permeability and modulating cytokine gene expression. J.Nutr. 133:4077-4082,2003.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据