4.5 Article

A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 23, 期 23, 页码 8440-8449

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.23.8440-8449.2003

关键词

-

向作者/读者索取更多资源

Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of the telomere terminal repeats. The catalytic protein subunit of the telomerase complex, known as TERT, possesses a reverse transcriptase (RT) domain that mediates nucleotide addition. The RT domain of TERT is distinguishable from retroviral and retrotransposon RTs in having a sizable insertion between conserved motifs A and B', within the so-called fingers domain. Sequence analysis revealed the existence of conserved residues in this region, named IFD (insertion in fingers domain). Mutations of some of the conserved residues in Saccharomyces cerevisiae TERT (Est2p) abolished telomerase function in vivo, testifying to their importance. Significant effects of the mutations on telomerase activity in vitro were observed, with most of the mutants exhibiting a uniform reduction in activity regardless of primer sequence. Remarkably, one mutant manifested a primer-specific defect, being selectively impaired in extending primers that form short hybrids with telomerase RNA. This mutant also accumulated products that correspond to one complete round of repeat synthesis, implying an inability to effect the repositioning of the DNA product relative to the RNA template that is necessary for multiple repeat addition. Our results suggest that the ability to stabilize short RNA-DNA hybrids is crucial for telomerase function in vivo and that this ability is mediated in part by a more elaborate fingers domain structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据