4.3 Article

Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content

期刊

CELL CALCIUM
卷 44, 期 3, 页码 324-338

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2008.01.003

关键词

calcium; Bcl-2; apoptosis; inositol 1,4,5-triphosphate

资金

  1. BBSRC
  2. Royal Society University Research
  3. NIH [R01 DK49194]
  4. Biotechnology and Biological Sciences Research Council [BBS/E/B/0000C116, BBS/E/B/00001116] Funding Source: researchfish
  5. BBSRC [BBS/E/B/0000H110] Funding Source: UKRI

向作者/读者索取更多资源

Cell survival is promoted by the oncoprotein Bcl-2. Previous studies have established that one of the pro-survival actions of Bcl-2 is to reduce cellular fluxes of Ca2+ within cells. in particular, Bcl-2 has been demonstrated to inhibit the release of Ca2+ from the endoplasmic reticulum. However, the mechanism by which Bcl-2 causes reduced Ca2+ release is unclear. In the accompanying paper [C.J. Hanson, M.D. Bootman, C.W. Distelhorst, T Maraldi, H.L. Roderick, The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect, Cell Calcium (2008)], we described that only stable expression of Bcl-2 allowed it to work in a pro-survival manner whereas transient expression did not. In this study, we have employed HEK-293 cells that stably express Bcl-2, and which are, therefore, protected from pro-apoptotic stimuli, to examine the effect of Bcl-2 on Ca2+ homeostasis and signalling. We observed that Bcl-2 expression decreased the Ca2+ responses of cells induced by application of submaximal agonist concentrations. Whereas, decreasing endogenous Bcl-2 concentration using siRNA potentiated Ca2+ responses. Furthermore, we found that Bcl-2 expression reduced mitochondrial Ca2+ uptake by raising the threshold cytosolic Ca2+ concentration required to activate sequestration. Using a number of different assays, we did not find any evidence for reduction of endoplasmic reticulum luminal Ca2+ in our Bcl-2-expressing cells. Indeed, we observed that Bcl-2 served to preserve the content of the agonist-sensitive Call pool. Endogenous Bcl-2 was found to interact with inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) in our cells, and to modify the profile of InsP(3)R expression. Our data suggest that the presence of Bcl-2 in the proteome of cells has multiple effects on agonist-mediated Ca2+ signals, and can abrogate responses to submaximal levels of stimulation through direct control of InsP(3)Rs. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据