4.4 Article Proceedings Paper

Regulation of drug and bile salt transporters in liver and intestine

期刊

DRUG METABOLISM REVIEWS
卷 35, 期 4, 页码 305-317

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1081/DMR-120026398

关键词

transcription factors; farnesoid X receptor; steroid receptors; cholestasis; signaling; bile acids and salts

向作者/读者索取更多资源

Major determinants of the bioavailability of drugs are the degree of intestinal absorption and the hepatic first-pass effect. Drugs need to overcome several membrane barriers before reaching the systemic circulation, each of which expresses an array of specialized transport proteins for drug uptake or efflux. The P-glycoprotein MDR1 (multidrug resistance gene product, ABCB1) is expressed at the apical surface of enterocytes, where it mediates the efflux of xenobiotics into the intestinal lumen before these can access the portal circulation. Increased expression of MDR1 reduces the bioavailability of MDR1 substrates such as digoxin, cyclosporin, and taxol. Numerous xenobiotics can induce the MDR1] gene through activation of the nuclear pregnane X receptor (PXR). This explains the risk for drug interactions that is inherent to pharmacotherapy with PXR ligands such as rifampin, phenobarbital, statins, and St. John's wort. Other PXR-regulated genes include cytochrome P450 3A4, the digoxin and bile salt transporter Oatp2 (organic anion transporting polypeptide 2, Slc01a4) of the basolateral hepatocyte membrane, and the xenobiotic efflux, pump Mrp2 (multidrug resistance associated protein 2, Abcc2) of the canalicular hepatocyte membrane. A second orphan nuclear receptor that is activated by xenobiotics is the constitutive androstane receptor (CAR), which induces Mrp2 and Mrp3 (Abcc3). The PXR and CAR are thus important xenosensors that mediate drug-induced activation of the detoxifying transport and enzyme systems in liver and intestine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据