4.6 Article

Microstructural investigation and magnetic properties of CoFe2O4 nanowires synthesized inside carbon nanotubes

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 5, 期 17, 页码 3716-3723

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b304773c

关键词

-

向作者/读者索取更多资源

Cobalt ferrite nanowires with an average diameter of 50 nm and lengths up to several micrometers were synthesized inside multi-walled carbon nanotubes under mild reaction conditions, i.e. 100degreesC and atmospheric pressure, using an aqueous nitrate precursor salt filling the tubes. The concept of a confinement effect inside carbon nanotubes has been advanced to explain the formation of CoFe2O4 under such mild reaction conditions. The formation of caps near the tube tips at the beginning of the nitrate decomposition meant that each nanotube was considered as a closed nanoreactor, in which the reaction conditions could be very different to the macroscopic conditions outside the tube. A post-synthesis treatment under inert atmosphere allowed the growth of CoFe2O4 particles, from a disordered hair-like dendritic structure at 100degreesC to highly crystallized domains at higher temperatures. A material with high coercivity at room temperature for small particles of about 25 nm in diameter was obtained by submitting the CoFe2O4 nanowires after calcination in air at 100degreesC to an argon treatment at 550degreesC for 2 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据