4.4 Article

Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataficus

期刊

JOURNAL OF BACTERIOLOGY
卷 185, 期 2, 页码 482-488

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.185.2.482-488.2003

关键词

-

向作者/读者索取更多资源

Sulfolobus solfataricus secretes an acid-resistant alpha-amylase (amyA) during growth on starch as the sole carbon and energy source. Synthesis of this activity is subject to catabolite repression. To better understand alpha-amylase function and regulation, the structural gene was identified and disrupted and the resulting mutant was characterized. Internal alpha-amylase peptide sequences obtained by tandem mass spectroscopy were used to identify the amyA coding sequence. Anti-a-amylase antibodies raised against the purified protein immuno-precipitated secreted alpha-amyllase activity and verified the enzymatic identity of the sequenced protein. A new gene replacement method was used to disrupt the amyA coding sequence by insertion of a modified allele of the S. solfataricus lacS gene. PCR and DNA sequence analysis were used to characterize the altered amyA locus in the recombinant strain. The amyA::lacS mutant lost the ability to grow on starch, glycogen, or pullulan as sole carbon and energy sources. During growth on a non-catabolite-repressing carbon source with added starch, the mutant produced no detectable secreted amylase activity as determined by enzyme assay, plate assay, or Western blot analysis. These results clarify the biological role of the alpha-amylase and provide additional methods for the directed genetic manipulation of the S. solfataricus genome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据