4.7 Article Proceedings Paper

GABA, gamma-hydroxybutyric acid, and neurological disease

期刊

ANNALS OF NEUROLOGY
卷 54, 期 -, 页码 S3-S12

出版社

WILEY
DOI: 10.1002/ana.10696

关键词

-

向作者/读者索取更多资源

gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA is converted from glutamic acid by the action of glutamic acid decarboxylase (GAD) of which two isoforms exist GAD65 and GAD67. GABA then is broken down, both within the cell and in the synaptic cleft by GABA transaminase to form succinic semialdehyde. In turn, succinic semialdehyde is converted either to succinic acid by succinic semialdehyde dehydrogenase or into gamma-hydroxybutyric acid (GHB) by succinic semialdehyde reductase. Because GABA modulates the majority of inhibition that is ongoing in the brain, perturbations in GABAergic inhibition have the potential to result in seizures. Therefore, the most common disorder in which GABA is targeted as a treatment is epilepsy. However, other disorders such as psychiatric disease, spasticity, and stiff-person syndrome all have been related to disorders of GABAergic function in the brain. This review covers the roles of GABAergic neurotransmission in epilepsy, anxiety disorders, schizophrenia, stiff-person syndrome, and premenstrual dysphoric disorder. In the final section of this review, the GABA metabolite GHB is discussed in terms of its physiological significance and its role in epilepsy, sleep disorders, drug and alcohol addiction, and an inborn error of GABA metabolism, succinic semialdehyde dehydrogenase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据