4.6 Article

Alterations in nitric oxide-cGMP pathway in ventricular myocytes from obese leptin-deficient mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00316.2003

关键词

myocyte shortening; soluble guanylyl cyclase; protein kinase

资金

  1. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R29HL040320, R01HL040320] Funding Source: NIH RePORTER
  2. NHLBI NIH HHS [HL 40320] Funding Source: Medline

向作者/读者索取更多资源

Leptin is a regulator of body weight and affects nitric oxide (NO) production. This study was designed to determine whether the myocardial NO-cGMP signal transduction system was altered in leptin-deficient obese mice. Contractile function, guanylyl cyclase activity, and cGMP-dependent protein phosphorylation were assessed in ventricular myocytes isolated from genetically obese (B6.V-Lep(ob)) and age-matched lean (C57BL/6J) mice. There were no differences in baseline contraction between the lean and obese groups. After stimulation with the NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-6) and 10(-5) M) or a membrane-permeable cGMP analog 8-bromo-cGMP (8-Br-cGMP, 10(-6) and 10(-5) M), cell contractility was depressed. However, 8-Br-cGMP had significantly greater effects in obese mice than in lean controls with percent shortening reduced by 47 vs. 39% and maximal rate of shortening decreased by 46 vs. 36%. The negative effects of SNAP were similar between the two groups. Soluble guanylyl cyclase activity was not attenuated. This suggests that the activity of the cGMP-independent NO pathway may be enhanced in obesity. The phosphorylated protein profile of cGMP-dependent protein kinase showed that four proteins were more intensively phosphorylated in obese mice, which suggests an explanation for the enhanced effect of cGMP. These results indicate that the NO-cGMP signaling pathway was significantly altered in ventricular myocytes from the leptin-deficient obese mouse model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据