4.4 Article

Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy

期刊

CELL BIOLOGY INTERNATIONAL
卷 32, 期 9, 页码 1031-1043

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cellbi.2008.04.021

关键词

Cancer; Chemotherapy; Resistance; Polyploidy; Endoreduplication; Mitotic catastrophe

资金

  1. French National League
  2. French National League Against Cancer

向作者/读者索取更多资源

Cancer chemotherapy can induce tumor regression followed, in many cases, by relapse in the long-term. Thus this study was performed to assess the determinants of such phenomenon using an in vivo cancer model and in vitro approaches. When animals bearing an established tumor are treated by cisplatin, the tumor initially undergoes a dramatic shrinkage and is characterized by giant tumor cells that do not proliferate but maintain DNA synthesis. After several weeks of latency, the tumor resumes its progression and consists of small proliferating cells. Similarly, when tumor cells are exposed in vitro to pharmacological concentrations of cisplatin, mitotic activity stops initially but cells maintain DNA duplication. This DNA endoreduplication generates giant polyploid cells that then initiate abortive mitoses and can die through mitotic catastrophe. However, many polyploid cells survive for weeks as non-proliferating mono- or multi-nucleated giant cells which acquire a senescence phenotype. Prolonged observation of these cells sheds light on the delayed emergence of a limited number of extensive colonies which originate from polyploid cells, as demonstrated by cell sorting analysis. Theses colonies are made of small diploid cells which differ from parental cells by stereotyped chromosomal aberrations and an increased resistance to cytotoxic drugs. These data suggest that a multistep pathway, including DNA endoreduplication, polyploidy, then depolyploidization and generation of clonogenic escape cells can account for tumor relapse after initial efficient chemotherapy. (C) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据