4.4 Article

Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats

期刊

CELL BIOLOGY INTERNATIONAL
卷 32, 期 9, 页码 1150-1157

出版社

WILEY
DOI: 10.1016/j.cellbi.2008.06.005

关键词

Osteoporosis; Bone regeneration; Bone morphogenetic protein 2; Tissue engineering; Gene therapy

资金

  1. Chinese National Natural Science Foundation [30772423]
  2. Programs of Science and Technology Commission Foundation of Sichuan Province, China [2006Z09-022, 0040305301091]

向作者/读者索取更多资源

Objective: The aim of this study was to develop a feasible approach to promote bone healing in osteoporotic rats using autogenous bone tissue-engineering and gene transfection of human bone morphogenetic protein 2 (hBMP-2). Methods: Bone marrow stromal cells (BMSCs) from the left tibia of osteoporotic rats were transfected with the hBMP-2 gene in vitro which was confirmed by immunohistochemistry, in situ hybridization and Western blotting. Autogenous transfected or untransfected BMSCs were seeded on macroporous coral hydroxyapatite (CHA) scaffolds. Each cell-scaffold construct was implanted into a defect site which was created in the ramus of the mandible of osteoporotic rats. Four or eight weeks after implantation in situ hybridization was performed in BMSCs transfected with hBMP-2, X-ray examinations, histological and histomorphological analyses were used to evaluate the effect of tissue-engineered bone on osseous defect repair. Results: Newly formed bone was observed at the margin of the defect 4 weeks after implantation with BMSCs transfected with BMP-2. Mature bone was observed 8 weeks after treatment. In the control group there was considerably less new bone and some adipose tissue was observed at the defect margins 8 weeks after implantation. Conclusions: Autogenous cells transfected with hBMP-2 promote bone formation in osteoporotic rats. BMSC-mediated BMP-2 gene therapy used in conjunction with bone tissue engineering may be used to successfully treat bone defects in osteoporotic rats. This method provides a powerful tool for bone regeneration and other tissue engineering. (C) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据