4.8 Article

Stability of the bacterial community in a pulp mill effluent treatment system during normal operation and a system shutdown

期刊

WATER RESEARCH
卷 37, 期 20, 页码 4873-4884

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2003.08.019

关键词

activated sludge; molecular fingerprinting; pulp and paper; ribosomal intergenic spacer; 16S rRNA

向作者/读者索取更多资源

Currently, very little is known about the normal dynamics of microbial populations in wastewater treatment systems and the relationship between population dynamics and functional stability of treatment systems. We monitored the bacterial community in an oxygen activated sludge system at a pulp and paper mill during a 55-day period that included normal operation as well as an 11-day shutdown of the system and the subsequent start-up. Ribosomal intergenic spacer (RIS) length polymorphism fingerprints were very similar (57-88% similar) throughout the study period. Analysis of clone libraries of RIS-rRNA gene amplicons indicated that Proteobacteria affiliated with the genera Paracraurococcus and Acidovorax as well as a Green Nonsulfur Bacterium affiliated with the genus Roseiflexus were consistently among predominant members of the community. By comparison, wastewater treatment systems from different pulp mills yielded dissimilar fingerprints (9-17% similar), and their clone libraries had distinct predominant phylotypes. Our analysis strongly suggests that the composition of the bacterial community in the former treatment system was stable during normal operation as well as the shutdown and start-up. This stability coincided with functional stability, including consistent and nearly complete removal of biological oxygen demand. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据