4.6 Article

Mechanism of dilation to reactive oxygen species in human coronary arterioles

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00458.2003

关键词

coronary microcirculation

资金

  1. NHLBI NIH HHS [HL-68769, HL-65203] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [P01HL068769, P50HL065203] Funding Source: NIH RePORTER

向作者/读者索取更多资源

We tested whether reactive oxygen species (ROS) generated from treatment with xanthine (XA) and xanthine oxidase (XO) alter vascular tone of human coronary arterioles (HCA). Fresh human coronary arterioles (HCA) from right atrial appendages were cannulated for video microscopy. ROS generated by XA (10(-4) M) + XO (10 mU/ml) dilated HCA (99+/-1%, 20 min after application of XA/XO). This dilation was not affected by denudation or superoxide dismutase (150 U/ml). Catalase (500 U/ml or 5,000 U/ml) attenuated the dilation early on, but a significant latent vasodilation appeared after 5 min peaking at 20 min (51+/-1%, 20 min after application of XA/XO + 500 U/ml catalase, P<0.01 vs. control). KCl (40 mM) reduced the early and sustained vasodilation to XA/XO in the absence of catalase but 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ, 5x10(-5) M), diethyldithiocarbamate trihydrate (DDC, 10(-2) M), and deferoxamine (DFX, 10(-3) M) had no effect. In contrast, the catalase-resistant vasodilation was significantly attenuated by DDC, ODQ, and DFX as well as polyethylene-glycolated catalase (5,000 U/ml), but KCl had no effect. Confocal microscopy revealed that even in the presence of catalase, 2',7'-dichlorodihydrofluoresein diacetate fluorescence was observed in the vascular smooth muscle, but this was abolished by DDC. These data indicate that the exogenously generated superoxide anion (O-2(-).) by XA/XO is spontaneously converted to H2O2, which dilates HCA through vascular smooth muscle hyperpolarization. O-2(-). is also converted to H2O2 likely by superoxide dismustase within vascular cells and dilates HCA through a different pathway involving the activation of guanylate cyclase. These findings suggest that exogenously and endogenously produced H2O2 may elicit vasodilation by different mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据