4.6 Article

Increased susceptibility to ventricular arrhythmias is associated with changes in Ca2+ regulatory proteins in paraplegic rats

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00319.2003

关键词

sarco(endoplasmic) reticulum calcium ATPase; phospholamban; exchanger; real-time polymerase chain reaction; electrocardiogram

资金

  1. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [K01HL067713] Funding Source: NIH RePORTER
  2. NHLBI NIH HHS [HL-67713] Funding Source: Medline

向作者/读者索取更多资源

Paraplegia may increase susceptibility to ventricular arrhythmias by altering the autonomic control of the heart. Altered cardiac autonomic control has been documented to change the expression of genes that encode cardiac Ca2+ regulatory proteins. Therefore, we tested the hypothesis that paraplegia alters cardiac electrophysiology with concomitant changes in Ca2+ regulatory proteins in a manner that increases the susceptibility to ventricular arrhythmias. To test this hypothesis, intact (n = 10) and paraplegic (n = 6) male Wistar rats were chronically instrumented to measure atrioventricular ( AV) interval, sinus cycle length, sinus node recovery time (SNRT), SNRT corrected for spontaneous sinus cycle (cSNRT), Wenckebach cycle length (WCL), and the electrical stimulation threshold to induce ventricular arrhythmias. In addition, relative protein abundance and mRNA expression for sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA), phospholamban, and the Na/Ca exchanger were determined in intact (n = 8) and paraplegic (n = 8) rats. Paraplegia significantly (P < 0.05) reduced AV interval (-25%), sinus cycle length (-24%), SNRT (-28%), cSNRT (-53%), WCL (-19%), and the electrical stimulation threshold to induce ventricular arrhythmia (-48%). Paraplegia significantly increased the relative protein abundances of SERCA (45%) and the Na/Ca exchanger (40%) and decreased phospholamban levels (-28%). In contrast, only the relative mRNA expression of the Na/Ca exchanger was increased (25%) in paraplegic rats. These data demonstrate that paraplegia enhances cardiac electrophysiological properties and alters Ca2+ regulatory proteins in a manner that increases susceptibility to ventricular arrhythmias.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据