4.7 Article

The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation

期刊

DEVELOPMENT
卷 130, 期 23, 页码 5609-5624

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.00798

关键词

Xenopus; SOX3; Nodal-related protein; Xni-5; beta-catenin; VegT

资金

  1. NIGMS NIH HHS [GM54001] Funding Source: Medline

向作者/读者索取更多资源

In Xenopus laevis, beta-catenin-mediated dorsal axis formation can be suppressed by overexpression of the HMG-box transcription factor XSOX3. Mutational analysis indicates that this effect is due not to the binding of XSOX3 to beta-catenin nor to its competition with beta-catenin-regulated TCF-type transcription factors for specific DNA binding sites, but rather to SOX3 binding to sites within the promoter of the early VegT- and beta-catenin-regulated dorsal-mesoderm-inducing gene Xnr5. Although B1-type SOX proteins, such as XSOX3, are commonly thought to act as transcriptional activators, XSOX3 acts as a transcriptional repressor of Xnr5 in both the intact embryo and animal caps injected with VegT RNA. Expression of a chimeric polypeptide composed of XSOX3 and a VP16 transcriptional activation domain or morpholino-induced decrease in endogenous XSOX3 polypeptide levels lead to an increase in Xnr5 expression, as does injection of an anti-XSOX3 antibody that inhibits XSOX3 DNA binding. These observations indicate that maternal XSOX3 acts in a novel manner to restrict Xnr5 expression to the vegetal hemisphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据