4.7 Article

The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity

期刊

DEVELOPMENT
卷 130, 期 25, 页码 6317-6328

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.00848

关键词

protein evolution; cell-cell recognition; comparative evolution; reverse genetics

向作者/读者索取更多资源

Drosophila melanogaster is an arthropod with a much more complex anatomy and physiology than the nematode Caenorhabditis elegans. We investigated one of the protein superfamilies in the two organisms that plays a major role in development and function of cell-cell communication: the immunoglobulin superfamily (IgSF). Using hidden Markov models, we identified 142 IgSF proteins in Drosophila and 80 in C. elegans. Of these, 58 and 22, respectively, have been previously identified by experiments. On the basis of homology and the structural characterisation of the proteins, we can suggest probable types of function for most of the novel proteins. Though overall Drosophila has fewer genes than C. elegans, it has many more IgSF cell-surface and secreted proteins. Half the IgSF proteins in C. elegans and three quarters of those in Drosophila have evolved subsequent to the divergence of the two organisms. These results suggest that the expansion of this protein superfamily is one of the factors that have contributed to the formation of the more complex physiological features that are found in Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据