4.5 Article

Emergence of neural integration in the head-direction system by visual supervision

期刊

NEUROSCIENCE
卷 120, 期 3, 页码 877-891

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00201-X

关键词

learning; amplification; persistent; model; Hebb; attractor

向作者/读者索取更多资源

Head-direction (HD) cells in subcortical areas of the mammalian brain are tuned to a particular head direction in space; a population of such neurons forms a neural compass that may be relevant for spatial navigation. The development of neural circuits constituting the head-direction system is poorly understood. Inspired by electrophysiological experiments about the role of recurrent synaptic connections, we investigate a learning rule that teaches neurons to amplify feed-forward inputs. We simulate random head movements of a rat, during which neurons receive both visual and vestibular (head-velocity) inputs. Remarkably, as recurrent connections learn to amplify exclusively the visual inputs, a neural network emerges that performs spatio-temporal integration. That is, during head movements in darkness, neurons resemble HD cells by maintaining a fixed tuning to head direction. The proposed learning rule exhibits similarities with known forms of anti-Hebbian synaptic plasticity. We conclude that selective amplification could serve as a general principle for the synaptic development of multimodal feedback circuits in the brain. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据