4.5 Article

Methamphetamine-induced deficits of brain monoaminergic neuronal markers: Distal axotomy or neuronal plasticity

期刊

NEUROSCIENCE
卷 122, 期 2, 页码 499-513

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00476-7

关键词

methamphetamine; rat brain; monoaminergic

资金

  1. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [P30ES003819] Funding Source: NIH RePORTER
  2. NIEHS NIH HHS [ES07062, ES03819] Funding Source: Medline

向作者/读者索取更多资源

We examined the effects of methamphetamine (METH) on monoaminergic (i.e. dopamine and serotonin) axonal markers and glial cell activation in the rat brain. Our findings indicate that the loss of dopamine transporters (DAT), serotonin transporters (5-HTT), vesicular monoamine transporter type-2 (VMAT-2) and glial cell activation induced by METH in the striatum and in the central gray are consistent with a degenerative process. Our novel finding of METH effects on monoaminergic neurons in the central gray may have important implications on METH-induced hyperthermia. In other brain regions examined, DAT and 5-HTT deficits after METH administration were present in the absence of lasting changes in VMAT-2 levels or glial cell activation. Brain regions exhibiting protracted deficits in DAT and/or 5-HTT and VMAT-2 levels also expressed increased levels of [H-3]-R-PK11195 binding to peripheral benzodiazepine receptors, a quantitative marker of glial cell activation. Immunohistochemical assessment of microglia and astrocytes confirmed the PBR results. Microglia activation was more pronounced than astrocytosis in affected regions in most METH-exposed brains with the exception of a small number of rats that were most severely affected by METH based on loss of body weight. In these rats, both microglia and astrocytes were highly activated and expressed a distinct regional pattern suggestive of widespread brain injury. The reason for the pattern of glial cell activation in this group of rats is not currently known but it may be associated with METH-induced hyperthermia. In summary, our findings suggest two neurotoxic end-points in the brain of METH-exposed animals. Brain regions exhibiting DAT and 5-HTT deficits that co-localize with decreased VMAT-2 levels and glial cell activation may represent monoaminergic terminal degeneration. However, the DAT and 5-HTT deficits in brain regions lacking a deficit in VMAT-2 and glial cell activation may reflect drug-induced modulation of these plasma membrane proteins. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据